Granites and convergence zones: Example of the Himalaya
1.Tectonic framework of the
Himalaya
India-Eurasia convergence;
Destruction of the Tethys ocean;
Subduction stage (> 100 Ma – 25 Ma = Cretaceous-Oligocene);
Collision stage (25 Ma – present = Miocene and Pliocene);
Post-collision stage (present): major shear zones and extrusion.
Present structure: thrust stack with ophiolite sequence.
Several groups of plutons. Thick lithosphere.
2. Subduction-related
granites: “Andean” I-types
The “trans-Himalayan” batholith.
A.
Petrology and mineralogy
Complete series diorite-tonalite-granodiorite-granite.
Typical minerals : Cpx, Hbl, Bt.
MME common.
B. Geochemistry
1.Major elements
Calc-alkaline, metaluminous. Moderate K/Na and Mg/Mg+Fe.
2.Trace elements
Close to average continental crust. Moderately “enriched”
compared to the chondrites in REE. Moderate Eu anomaly.
Rich in fluid-mobile elements.
3.Isotopes
Characteristics intermediate between mantle and continental
crust, suggests a “mixed” source.
C.Petrogenesis
Arc-related magmatism: fluid-enriched mantle in subduction
zone remelts to yield parental magmas of I-types .
3. Collision related S-type
leucogranites
A. Petrology and mineralogy
Granites,
leucogranites.
Biotite,
Muscovite, sometimes garnet, tourmaline.
B. Geochemistry
1. Major elements
“Calc-alkaline”, peraluminous. High K/Na, Mg/MG+Fe varies.
2. Trace elements
Compared to the I-types : slightly enriched in incompatible elements, depleted in compatible (= melting of continental crust material ?). Deep Eu anomaly (Plagio in the residuum).
3. Isotopes
“Very crustal”: high Sr and low Nd isotopic ratios.
C. Petrogenesis
Melting of sediments from the crust during the collision.
4. Post-collision A-types
(and, actually, Mg-K subalkaline I-types, cf .Vredenburg
pluton seen at Paternoster)
Some small plutons, dykes, etc., typically associated to
major shear zones.
A. Petrology and mineralogy
Syenites, Qtz
syenites, granites, alkali granites.
Little biotite, pyroxenes even in differenciated terms. Alkali
pyroxenes or amphiboles possible.
B. Geochemistry
1. Major elements
Alkaline, peralkaline (not that the two terms do not have
the same values, one refers to a magmatic series, the other to a position in
A/CNK vs. A/NK diagrams).
Low K/Na, low Mg/Mg+Fe
2. Trace elements
Rich in LREE (10-100 times more than I and S types !).
Some huge depletions and enrichment relative to the I and S
types : very special sort of granite.
3. Isotopes
Both crustal and mantle-derived terms are observed. Suggest a bimodal origin.
C. Petrogenesis
Poorly constrained. Melting at the crust-mantle interface probably (moho), either due to “shear heating” in active shear zones or to “slab breakoff”.
Read also: Decomposed Granite DG: Properties, Uses, Installation